If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-6n-10=0
a = 4; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·4·(-10)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-14}{2*4}=\frac{-8}{8} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+14}{2*4}=\frac{20}{8} =2+1/2 $
| 4b-5=3b+4 | | 4p-3p=15 | | 6x+10=-3x-7 | | 17d=-20+19d | | X+0.06x=19,080 | | 3(4x−7)=33−6x | | .16=n+6 | | 4p−3p=15 | | 5+9x=72 | | 7n-3n=12 | | 6g-3g=3 | | k+46=394 | | 2x+13=-3x+53 | | -3=v-7/3 | | 937=s+31 | | u+76=673 | | 0=−16t2+30t+5 | | 5x+1=-4x+82 | | 3x/8+1/2=x/4+2 | | -8x-17=x-53 | | d+16=974 | | -17+19w=20w-4 | | x+1=-31 | | 7.50h=37.50 | | q-608=358 | | 3x=4=-16 | | 24-4c=4 | | p=287+587 | | 2(v-9)-1=9 | | 4x+21=7x-12 | | h=934+39 | | 2.5(6x-4)=10+4(1.5+0.5x0 |